Practice Questions on Engineering Mathematics

 Q6. Find the limit $X(s)=\dfrac{10(s+1)}{s(s^2+4s+3)}$
 A. $10/3$ B. $17/3$ C. $10/7$ D. $3/7$

 Q7. Consider two independent random variables $X$  and $Y$  with identical distributions.  The  variables  $X$ and $Y$ take values 0, 1 and  2 with probabilities $1/2$, $1/4$, $1/4$ respectively. What is the conditional probability, $\text P(X+Y=2|X-Y=0)$
 A. 3.455 B. 2.144 C. 1.098 D. 0.166

 Q8. The residues of a complex function $x(z)=\dfrac{(1-3z)}{z(z-1)(z-3)}$ at it's poles
 A. $1, 2, -1$ B. $\dfrac{1}{2}, 0, -1$ C. $\dfrac{1}{3}, 1, -\dfrac{4}{3}$ D. $-\dfrac{1}{3}, 0, 1$

 Q9. What is value of the integral $\text I=\dfrac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\exp\left(-\dfrac{x^2}{32}\right)dx$
 A. 2 B. 3 C. 4 D. 6

 Q10. A box contains 3 white cards and 2 black cards. Another bag contains 2 white and 4 black cards. A box and a card are picked random. The probability that the card will be white is:
 A. 3/11 B. 6/7 C. 7/15 D. 9/11

Popular Blog Categories

To appreciate our efforts, please like and share the website.